Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(5): 2435-2529, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38294167

RESUMO

Penetrant-induced plasticization has prevented the industrial deployment of many polymers for membrane-based gas separations. With the advent of microporous polymers, new structural design features and unprecedented property sets are now accessible under controlled laboratory conditions, but property sets can often deteriorate due to plasticization. Therefore, a critical understanding of the origins of plasticization in microporous polymers and the development of strategies to mitigate this effect are needed to advance this area of research. Herein, an integrative discussion is provided on seminal plasticization theory and gas transport models, and these theories and models are compared to an exhaustive database of plasticization characteristics of microporous polymers. Correlations between specific polymer properties and plasticization behavior are presented, including analyses of plasticization pressures from pure-gas permeation tests and mixed-gas permeation tests for pure polymers and composite films. Finally, an evaluation of common and current state-of-the-art strategies to mitigate plasticization is provided along with suggestions for future directions of fundamental and applied research on the topic.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37931132

RESUMO

Poor interfacial compatibility remains a pressing challenge in the fabrication of high-performance polymer-MOF composites. In response, introducing compatible chemistries such as a carboxylic acid moiety has emerged as a compelling strategy to increase polymer-MOF interactions. In this work, we leveraged compatible functionalities in UiO-66-NH2 and a carboxylic acid-functionalized PIM-1 to fabricate mixed-matrix membranes (MMMs) with improved separation performance compared to PIM-1-based MMMs in industrially relevant conditions. Under pure-gas conditions, PIM-COOH-based MMMs retained selectivity with increasing MOF loading and showed increased permeability due to increased diffusion. The composites were further investigated under industrially relevant conditions, including CO2/N2, CO2/CH4, and H2S/CO2/CH4 mixtures, to elucidate the effects of competitive sorption and plasticization. Incorporation of UiO-66-NH2 in PIM-COOH and PIM-1 mitigated the effects of CO2- and H2S-induced plasticization typically observed in linear polymers. In CO2-based binary mixed-gas tests, all samples showed similar performance as that in pure-gas tests, with minimal competitive sorption contributions associated with the amine functional groups of the MOF. In ternary mixed-gas tests, improved plasticization resistance and interfacial compatibility resulted in PIM-COOH-based MMMs having the highest H2S/CH4 and CO2/CH4 selectivity combinations among the films tested in this study. These findings demonstrate that selecting MOFs and polymers with compatible functional groups is a useful strategy in developing high-performing microporous MMMs that require stability under complex and industrially relevant conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA